A Comparison of SVM and RVM for Human Action Recognition
نویسندگان
چکیده
Human action recognition is a task of analyzing human action that occurs in a video. This paper investigates action recognition by using two classification techniques, namely Relevance Vector Machine (RVM) and Support Vector Machine (SVM). SVM is a technique for supervised classification that used in statistics and machine learning. By separating the distinct class with a maximum possible wide gap, SVM tries to predict the respective class given a set of input data. On the other hand, RVM is a Bayesian model of Generalized Linear Model (GLM) that has an identical function with SVM. RVM uses significantly fewer basis functions as it uses Bayesian inference with a prior distribution on weight thus makes solution sparse. Experimental studies on a human action dataset show that RVM is better as compared to SVM on action recognition. Although RVM takes more training time, however, it requires fewer testing time than SVM. RVM model is more general because it contains minimum basis function. Therefore, it is more robust compared to SVM. RVM performs good classification on action recognition that contains large dataset.
منابع مشابه
Detection of Cardiac Hypertrophy by RVM and SVM Algorithms
The meaning of the hypertropy word is the increasing size.Heart hypertropy is symptoms of increase the thickness of the heart muscle that the left ventricular hypertrophy of them is the most common.The causes of hypertrophy heart disease are high blood pressure , aortic valve stenosis and sport activities respectively. Assessment of that by using ECG signal analysis is essential Because the ris...
متن کاملA comparison of SVM and RVM for Document Classification
Document classification is a task of assigning a new unclassified document to one of the predefined set of classes. The content based document classification uses the content of the document with some weighting criteria to assign it to one of the predefined classes. It is a major task in library science, electronic document management systems and information sciences. This paper investigates do...
متن کاملOnline Network Traffic Classification Algorithm Based on RVM
Since compared with the Support Vector Machine (SVM), the Relevance Vector Machine (RVM) not only has the advantage of avoiding the overlearn which is the characteristic of the SVM, but also greatly reduces the amount of computation of the kernel function and avoids the defects of the SVM that the scarcity is not strong, the large amount of calculation as well as the kernel function must satisf...
متن کاملImproved Training Algorithms to Reduced Set Vector Machine and Adaboost Cascade Classifier for Face Detection
In this paper we present improved training algorithms to two newly developed classifiers, reduced set vector machines and Adaboost cascade classifier applied in face detection, which are all based on learning from data. Support vector machine (SVM) has been proved to be a powerful tool for solving practical pattern recognition problems based on learning from data. Due to large number of support...
متن کاملA Comparison of SVM and RVM for Real-Time fMRI Applications
Introduction: Multivariate pattern analysis (MVPA) of fMRI data has been growing in popularity due to its sensitivity to networks of brain activation [1]. Another benefit of MVPA is that it is performed in a predictive modeling framework which is natural for implementing brain state prediction and real-time fMRI applications such as brain computer interfaces [2]. Support vector machines (SVM) h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016